
1

Using Scala for building DSL’s

Abhijit Sharma

Innovation Lab,
BMC Software

2

What is a DSL?

• Domain Specific Language
• Appropriate abstraction level for domain - uses precise

concepts and semantics of domain

• Concise and expressive for a specific domain – not general
purpose

• Domain experts can communicate, critique better with
programmers and amongst themselves

• Math – Mathematica, UI – HTML, CSS, Database - SQL

3

DSL’s at large
• Build tool Ant is an XML based

DSL

• Task to build a jar with a
dependency on task compile

• Web App framework Ruby on
Rails

• ActiveRecord to model domain
objects and persist them –

• Domain constraint
implementations do not clutter
API – uniqueness, cardinality,
null check

4

Cloud Computing DSL
• Audience – Non tech savvy cloud

end users

• DSL - English language sentence
for requesting a machine with
technical and price specifications

• Domain Concept – Machine

• Technical specifications - cpu,
os

• Pricing specifications - spot
price, pricing strategy –
default or define inline

Machine

•cpu:Cpu
•os:String
•spotPrice:Int Cpu

•arch: String
•cpus: Int

5

Cloud Computing DSL in Java
• Builder pattern - Method Chaining

Fluent Interface

• Issues

• Syntax restrictions, verbosity –
parenthesis, dot, semi-colons

• Non Domain complexity – Builder

• No Inline strategy – no higher order
functions

6

DSL Classification

• Internal DSL

• Embedded in a host language like Ruby, Scala,
Groovy – use their features

• Bound by host language syntax and semantics

• External DSL – standalone developed ground up

• Define syntax and semantics as a grammar

• Use tools like lexical analyzers, parsers,
interpretation, code generators

7

Internal DSL Classification

• Internal DSL
• Generative - Ruby, Groovy Techniques like

runtime metaprogramming
• Meta Objects – inject new behaviour at runtime

• Embedded in host language
• Smart API – Method chaining – Java etc.
• Syntax tree manipulation – Groovy, Ruby libraries
• Type Embedding – Scala – statically typed, type

constraints, no invalid operations on types

8

Scala Language

• Scala is a “scalable” language

• JVM based – leverage libs, JVM perf,
tools, install base etc

• Mixed Paradigm – Object Oriented +
Functional Programming

• Object Oriented Programming - Improves on Java
OOP (Traits, no statics, advanced types)

9

Scala Language

• Functional Programming - Functions
• No side effects and immutable variables

• “First-class” citizens - Can be assigned,
passed around, returned

• Higher order functions promote composition
using other more primitive functions

• Lots of powerful features – discussed later

• Statically Typed – Type Safe DSL

10

Scala – Readable style
• Type inference minimizes the

need for explicit type
information – still Type safe

• Elegant, succinct syntax
unlike verbose Java

• Optional dots, semi-colons and
parentheses

• Operators like methods

• Syntactic sugar method takes
one/zero argument, drop period
and parentheses

11

Scala - Implicits
• Implicits

• Conversions – return a wrapped
original type e.g. Integer

• Implicit argument to function –
don’t need to pass – Concise
syntax

• Generative expression - Implicit
conversion converts the 1, an Int, o
a RichInt which defines a ‘to’
method

• Lexically scoped – Unlike other
languages like Groovy where such
modifications are global in scope

12

Scala - Higher order functions
• Functions which take other

functions as parameters or
return them as results are
called higher-order functions

• Flexible mechanism for
composition

• Currying

13

Scala – Functional Combinators

• Calculate the total price of all Linux machines – uses
several combinators – filter, map, foldLeft – all take
other functions as predicates

14

Scala – Cloud Computing DSL - Implicits

• Consider excerpt - 8 cpus
“64bit” – Using Implicit
conversion we get the object
representing the CPU - Cpu(8,
64bit)

15

Scala – Cloud Computing DSL – E2E
DSL - new Machine having (8 cpus

"64bit") with_os “Linux“

• Implicit Conversion

• Method Chaining – Builder pattern –
without the cruft

• Syntactic sugar no parenthesis, dot,
brackets

16

Scala – Cloud Computing DSL – Functions

• Using Higher Order
Functions – Flexible pricing

• Spot Price Threshold - Inline
strategy

17

Scala - Pattern Matching

• Pattern Matching – Switch
Case on Steroids

• Cases can include value,
types, wild-cards, sequences,
tuples, deep inspection of
objects

18

Scala - Pattern Matching &Case Classes

• Case Classes – simplified
construction and can be used
in pattern matching

• Pattern matching on Case
Classes

• Deep pattern matching on
object contents

• Make good succinct
powerful DSL

19

Scala - Pattern Matching – Visitor Pattern

• Pattern match and case
classes – extensible visitor

• Different operations on tree

• Expression Evaluation

• Prefix Notation

• Very expressive, flexible and
concise code

20

Scala – For Comprehensions

• Loop through Iterable sequences and
comprehend/compute something

• E.g. Filter 32, 64 bit architectures

21

Scala – For Comprehensions + Option

• Wrap vars & function returns as
Option – Null Checks, resilient
programming

• Option sub classes : None and Some

• Options with for comprehensions,
automatic removal of None
elements from comprehensions

22

Scala – For Comprehensions + Option

• Validate and audit
machines

• Using Options with for
comprehensions eliminate
the need for most
“null/empty” checks.

• Succinct, safe DSL with
uncluttered API

23

Scala - Traits
• Traits are collections of fields and

behaviors that you can extend or mixin
to your classes.

• Modularize these concerns, yet enable
the fine-grained “mixing” of their
behaviors with other concerns at build
or run time – Callbacks & Ordered

• Traits can be mixed-in at class level or
at instance creation

• AOP Pervasive concerns - Logging,
Ordering, Callback Handling

24

External DSL in Scala
DSL - having (8 cpus "64bit") with_os "Linux" at_spot_price 30

• Parser Combinator library – available as a library on host
language – Scala

• External Parser Generators like Javacc – use tools to
generate code for tokenizing, parsing

• Parser Combinator Specification is like a BNF grammar

25

External DSL in Scala
• Each function is a parser - works on

a portion of the input, parses it and
may optionally pass on the
remaining part to the next parser in
the chain via the combinator

• Several combinators provided by the
library like ‘~’ the sequencing
combinator composes two parsers
sequentially.

• Optional function application
combinator (^^) can work, applying
the function on the result of the
sequencing combinator.

26

Thanks

abhijit.sharma@gmail.com

Twitter : sharmaabhijit

Blog : abhijitsharma.blogspot.com

